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An Implicit Two-Point Numerical
Integration Formula for Linear and Nonlinear
Stiff Systems of Ordinary Differential Equations

By Simeon Ola. Fatunla

Abstract. In [1], the author proposed a semi-implicit one-step integration formula
which effectively copes with linear systems of ordinary differential equations with
widely varying eigenvalues. The integration algorithm is based on a local representation
of the theoretical solution to the initial value problem by a linear combination of ex-
ponential functions. The resultant integration formula is of order four. Unfortunately,
this algorithm cannot cope with nonlinear stiff systems of ordinary differential equa-
tions. In this paper, the author extends the concept adopted in [1] to construct an
implicit two-point formula which can effectively cope with nonlinear stiff systems.

The resultant integration formula is of order five and it is L-stable and convergent.

1. Introduction. We shall consider initial value problems of ordinary differential
equations of the form

1.1 y'=f(x,y), y@=n,

wherey = (13, 2y,..., ™) andn = ('n, ..., ™n)T. It is assumed that the func-
tion f(x, y) is defined and continuous in the region I' defined as

I'=R xR, where R=a<x<b,

is a finite interval on the real line and y € R, implies |lyll,, <e°o. In addition, the
function f(x, y) also satisfies a Lipschitz condition of order one with respect to y.

Definition 1. The nonlinear initial value problem (1.1) is said to be stiff over the
interval R if for every x € R, the eigenvalues (\((x), s = 1, . . ., m) of the Jacobian
(0f/dy) satisfy the following conditions

(1.2) (a) ReA(x)<0, s=1,...,m,
Re A, (x)

(1.3) ®) max—z\r—- >>1, rs=1,...,m
Re A (x)

Let

14) X, =a+th, t=0,1,...,n,

represent a uniform subdivision of the interval of integration R with the steplength A
given by
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(1.5) h=( —a)n

for a fixed integer n.
As in [1], we approximate the theoretical solution to problem (1.1) over every
subinterval I, = x, < x <x,,, by the interpolating function

(1.6) Fo)=( - M)A - - e “2%)B +C,

where A, B and C are m-vectors with real entries ‘4, ‘B, *C and I an m x m identity
matrix whilst A; and A, are m x m diagonal matrices with complex entries given by

(1.7) oy, lay, i=1,2,...,m, respectively.

2. Derivation of the Integration Formula. If y, denotes the numerical approxi-
mation to the theoretical solution y(x,) at x = x, and f, = f(x,, y,), we impose the
following constraints on the interpolating function (1.6):

(a) that the interpolating function coincides with the theoretical solution at the
endpoints of the subinterval 7,: This implies that

(2.1) Yeaj = F@pyp),  7=0,1;

(b) that the first derivative of the interpolating function coincides with the right-
hand side of (1.1) at the endpoints of subinterval I,. This also implies that

(22) ft+j = F'(xt+i), j=0,1.

With these two sets of constraints, we readily obtain the following integration
formula

(2:3) Yev1 = Ve t(r tof, + 01,
where v, 0, and 0 are m by m diagonal matrices with entries given by

io n, —la,n

(1 —e1™Me *2
(2.4) i’Y = —ioz h ia n >
ial(e 2" _ o

_i i
o (1 e °‘2h)e°‘lh
(2.5) la - ; i 5
fo, (e~ a2t _ gt

(1 — ety (1 — e 2"
io = + 5
R iv n. . _lan  ign
NG ) fa,(e” “2" —e 1

respectively, fori =1,2,...,m.

(2.6)

The integration formula (2.3) can be expressed in the iterative form:

@7 vt =y, — (v + o)f, + 0f(x,, , yISD).

We now have to obtain numerical estimates for the elements of A; and A, (i.e.
the stiffness parameters).
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By using the Taylor series expansion of * yt 41 = y(xt +1) about x = x,, and the
Maclaurin series expansion of e la1h and e~'e2h in (2.3), we readily obtain the follow-
ing identity:

- W ift(r—l) - (_iazh)r - (ialh)r
L )NE oL Ty
r=1 r: r=0 r r=0 r.
) - (ialh)r— 1>[ w W ift(r) - (_ iazh)r ift]
@8 <‘ "ETa AT BT

(‘a, h)’“ w WD = (Cah) 'f,
h Z (=1y Z r! Zo r! ’
r=0 r=

i=1,2,...,m

As the coefficients of #°, h' and h? vanish identically in (2.8), we require that
the coefficients of #* and 4° vanish to give the following m pairs of equations:

(2.9) (ial + iaz)ift(Z) _ (ia% _ iag )ift(l) _ i“liaz(ial + iaz)ift =0,

and

(o, + ') — (fa + 1)) — o, ey (o —Ta3)f, =0,
(2.10)
fori=1,2,...,m.
Since we are not interested in the case of double eigenvalues, we divide both
equations (2.9) and (2.10) by ("ozl + iaz) to yield

(2.11) i) — (a; — o, YD ~ a0, 'f, =0,
and
(2.12) ift(3) _ (ia% _ ialia2 + iag )ifgl) _ ialia2(i0‘1 _ iaz)ift =0.

Equations (2.11) and (2.12) can be readily transformed to the following pair of
equations:

(2'13) (i(¥2 _ ial)ift(l) _ ialiaZift — i t(2)’
and
(2.14) (ia2 _ ial)ift(2) _ ialiazift(l) = _ ift(3)'
We now solve m pairs of equations (2.13) and (2.14) (for ial , iaz, i=1,...,m)

using any of the Newton-like schemes. In all the numerical experiments of Section 6,
we shall adopt the Brown scheme as proposed in [2].

3. Problem with the Convergence of Formula (2.7). In order that the iteration
formula (2.7) should converge, we do require that the relation
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(.1 Lol <1

is satisfied where L is the Lipschitz constant for f(x, y) with respect to y. Apparently,
this Lipschitz constant is very large for stiff systems and consequently, for condition
(3.1) to be satisfied, the steplength 7 must be extremely small.

With the view of making the integration formula (2.7) viable, we adopt the
principle of the Newton method for solving nonlinear systems of equations of the form

3.2) G(y)=0.
The solution to (3.2) is given by
(33) ylettl = ylsh — j=1(ylshe(ylsl),  s=o0,1,...,

where J(y) is the Jacobian matrix §G(»)/8y.
This modification transforms the integration formula (2.7) into the form

of -1
i =yl = [r- o, vt

< [ylsh —0fGe,, YIS —y, + (v + 0)f,], s=0,1,....

(34)

The final integration formula (3.4) when applied to stiff systems generally con-
verges to the solution in at most three iterations without any restriction imposed on
the steplength 4. We normally use the numerical solution at x = x, as the starting
value in the iteration (3.4); that is

(3.5) yiol =y,

4. Stability. By applying the integration formula (2.3) to the scalar test equation
“4.1) y =y,
where A is a complex constant with negative real part, we obtain

yt+1 P(al) a2> )\a h)

4.2) _ ’
Yt Q(al » Oy, \ h)
where
(4.3) P(ay, ay, N ) = ayap(e 2" — e*1") — hgy(1 - 172"
— Ay (1 e_azh)ealh,
and
(4.9) Qs 0, A, 1) = alaz(e_azh P

—Aay(1 — 1) —hey (1 — e %2M),
By setting &y = X or —a, = \ in Egs. (4.2) to (4.4), we have that

(4.5) Ves1lVe = eM,
and |eM| < 1 as Re A < 0.
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Hence, the numerical integration formulae (2.3), (2.7), (3.4) are L-stable and
hence A-stable and also exponentially fitted.

5. Order and Local Truncation Error. We associate with the integration formula
(2.3) and the constraints (2.13) and (2.14), the operator P[y(x), h] which is defined as

(5.1) Ply(x),.h] = y&x + k) — y(x) + (v + 0)f(x, y) — 0f(x + h, y(x + h)).

The local truncation error T, ; at x = x,, , is hence given by P[y(x,), h] with
¥(x,) assumed to be the theoretical solution to the problem (1.1). By assuming that
¥; = ¥(x,), the truncation error T, , for the integration formula (2.3) is readily ob-
tained as:

Ty =Y0r41) = Yiga

h6

(5.2) = 50 19 + 5(ay =) + 5} - @y, +o2) /P

—9(a, — a;)a? + a2 )ft(‘)

+ [5c2a3 — 9a,a,(0? —aja, +a2)] f,} + O(R7).

The last equation suggests that the numerical integration formula (2.3) with the
constraints (2.13) and (2.14) is of order five.

6. Experimental Results. All the numerical experiments were implemented on
an IBM 360/25 located at University of Benin (Nigeria). Numerical results are obtained
for both linear and nonlinear stiff systems of ordinary differential equations using
double precision arithmetic. For linear systems of ordinary differential equations of
order m, the stiffness parameters have constant values in the interval of integration.
Hence, the m pairs of nonlinear equations (2.13) and (2.14) are only solved once for the
stiffness parameters at the first step of the integration procedure. In all the numerical
experiments, unit initial values are assigned to these stiffness parameters. Also, the
iteration of the integration formula (3.4) is halted whenever the condition
Il ygffll I - yii]l l, < 10~8 is satisfied. Almost invariably, this condition is satisfied
in less than three iterations in all the test runs. The stiffness parameters are obtained
correctly to six decimal places in all the test runs.

The following initial value problems were considered in the interval 0 < x < 100.

Problem 1.
SYSTEM EXACT SOLUTION
¥y =-200(y - E(x)) + E'(x)
E(x) =10 — (10 + x)e~* y(x) = E(x) + 10e—200%

y(0) =10
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Problem 2.
SYSTEM

1y' =-2000'y, + 10002y + 1

'y(0) = 2y(0) = 0

FATUNLA

EXACT SOLUTION

ly(x) =—-497 _48—2000.596
10
— 5034 _,e”%5* +0.001
10

Zy(x) =25 0_76_2000'5x
1

—1.007 _4e%3* +0.001
10

Problem 3.
SYSTEM EXACT SOLUTION
»'=0.01 — [1 + (*y + 1000)('y + 1)] [0.001 + 1y + 2y]
2y' =001 — (1 + 2y2)(0.01 + 1y + 2y) UNKNOWN

'¥(0) = 2(0) =0

Problem 1 has been solved by Lapidus and Seinfeld [4] with the following
numerical integration schemes:

Scheme Designation
1. Fourth Order Runge Kutta RK4
2. Fourth Order Predictor Corrector (Adams) DEQ
3. Treanor’s Method ™
4. Trapezoidal Rule TR
5. Trapezoidal Rule with Extrapolation TR-EXTR
6. Liniger and Willoughby (1) LW1
7. Liniger and Willoughby (2) Lw2

The same problem was also solved in Fatunla [1].

Problem 2 has also been solved in Lambert [3] and Fatunla [1] whilst Problem
3 has been solved in Lambert [3].

Example 1. The theoretical solution to this scalar initial value problem has a
rapidly decaying component as well as a slowly decaying component thus posing the
same stability problem as for stiff systems. With the integration formula (3.4), we
generate the numerical solution to Problem 1 in the range 0 < x < 100 using two
different uniform mesh sizes # = 0.1 and 2 = 0.2. The numerical estimates of the
stiffness parameters are:

o, =—0.8890128 and a, = — 200.000000.

More accurate results are obtained than in [1] as the new scheme is of higher order.
Although, the relative error is slightly smaller at x = 0.4 by using # = 0.1, the relative
errors are of the same magnitude at x = 10 for both mesh sizes. This is perhaps due
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to the accumulation in the roundoff errors. The numerical and the theoretical solution
coincide in the interval 42.8 < x < 100.
Details of numerical results are given in Table 6.1 below:

TABLE 6.1
Relative Errors
Method h x=04 x =10.0
RK4 0.01 10 ¢ 20 _,
10 10~
DEQ 0.005 3».010_9 2.010_9
a
™ 0.2 6.710_8 1.010_9
TR 0.2 1.8510_2 4.310_5
TR-EXTR 0.2 14 _, 1.0 _g
10 10
LW1 0.2 1.110_3 5-010—3
LwW2 0.2 18 5 9.0 _4
10 10
FATUNLA (1] 0.2 2.910_5 1.810_7
FATUNLA [1] 0.1 1.410_5 1.110_7
FORMULA(3.4) 0.2 1.3810_6 8.2910_8
FORMULA(3.4) 0.1 1.3610_6 8.4210_8

Index
a automatic stepsize
maximum iterations of formula (3.4) is 2

Example 2. This problem is derived from Warten and Fowler [5] which is a
linear system with constant coefficients and eigenvalues A\, = —2000.5 and A, = —0.5.
The numerical integration was implefnented with a uniform mesh size # = 0.1 in the
interval 0 < x < 100. The numerical estimates of the stiffness parameters are

<—0.49987499 0 > A= <2ooo.50012 0 )
s - 2 .

1 0 —0.49987500 2 0 2000.5001

The details of the numerical experiments are given below in Table 6.2.

Example 3. This is the nonlinear initial value problem of reaction kinetics from
Liniger and Willoughby [6]. The eigenvalues of the system at x = 0 are A\, = —1012,
A, = —0.01 and at x = 100 the eigenvalues are:

A, =-21.7, A, =—0.089.
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The numerical solution to this problem was effected in the interval 0 < x < 100
with a uniform mesh size 2 = 0.1. The stiffness parameters are given by:

A= <—988.63647 0 A\ o (195056669 0
! 0 ~21.110642/” 2 0 1011.13956/ °

at x = 0 and by

o (131565802 0 oo <7.71526875 0 >
te 0 ~1.309375)" 2o 0 7.649220/

at x = 100.

The theoretical solution being unknown was taken as the numerical solution
obtained with the fourth order Runge Kutta scheme with mesh size h = 5 x 104
Lambert used this theoretical solution to start his integration formula at x = 1.0. The
author has his reservation as regards the accuracy of the theoretical solution at x = 100
because of the tendency for the propagation of roundoff errors which could arise
from using such a small mesh size.

The details of the numerical results are given below in Tables 6.3a and 6.3b.

TABLE 6.3a
Theoretical Formula (3.4) Lambert [3] Lambert [3]
h=5x10"% h=0.1 h=0.1 h =001
1 y —0.9916 —0.9990 —0.9990 —0.9989
2y +0.9833 +0.9940 +0.9940 +0.9939

Concluding Remarks. The author is of the opinion that the capability of the new
scheme in handling both linear and nonlinear stiff systems with a fairly large mesh size
makes it quite competitive with the other existing integration procedure. In cases when
f(x, y) is linear, the higher order derivatives are readily obtained by the relationship

m

PO =3 ajf%=1, i=1,...,m

=1
Equations (2.13) and (2.14) are solved once for linear systems as the stiffness parame-
ters have constant values.

If, however, f(x, y) is nonlinear, the higher order derivatives are also readily ob-
tained in terms of the lower derivatives.

The mere fact that no A-stable linear multistep method can have order exceeding
two is consoling enough in the task of computing if M j=1,2,3.

Although the stability considerations in Section 4 is only confined to diagonal
systems, Problem 2 indicates that the new algorithm can effectively cope with non-
diagonal systems.
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